2021年全国(三卷)高考数学(理)试题及答案

2022年11月23日 by 没有评论

考前须知: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.答复选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需

改动,用橡皮擦干净后,再选涂其它答案标号。答复非选择题时,将答案写在答题卡上。写 在本试卷上无效。

3.考试完毕后,将本试卷和答题卡一并交回。 一、选择题:此题共 12 小题,每题 5 分,共 60 分。在每题给出的四个选项中,只有一项为

3.中国古建筑借助榫卯将木构件连接起来,构件的凸出局部叫榫头,凹进局部叫卯眼,图 中木构件右边的小长方体是榫头.假设如图摆放的木构件与某一带卯眼的木构件咬合成 长方体,那么咬合时带卯眼的木构件的俯视图可以是

8.某群体中的每位成员使用挪动支付的概率都为 p ,各成员的支付方式互相独立,设 X 为

10.设 A,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ABC 为等边三角形且其面积 为 9 3 ,那么三棱锥 D ABC 体积的最大值为

11.设 F1 ,F2 是双曲线 〕的左,右焦点,O 是坐标原点.过 F2

作 C 的一条渐近线的垂线,垂足为 P .假设 PF1 6 OP ,那么 C 的离心率为

16.点 M 1,1 和抛物线x ,过 C 的焦点且斜率为 k 的直线与 C 交于 A ,B 两点.假

设∠AMB 90 ,那么 k ________. 三、解答题:共 70 分。解容许写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,

每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 〔一〕必考题:共 60 分。 17.〔12 分〕

某工厂为进步消费效率,开展技术创新活动,提出了完成某项消费任务的两种新的 消费方式.为比拟两种消费方式的效率,选取 40 名工人,将他们随机分成两组,每组 20 人。第一组工人用第一种消费方式,第二组工人用第二种消费方式.根据工人完成 消费任务的工作时间〔单位:min〕绘制了如下茎叶图:

〔2〕求 40 名工人完成消费任务所需时间的中位数 m ,并将完成消费任务所需时间超 过 m 和不超过 m 的工人数填入下面的列联表:

〔3〕根据〔2〕中的列联表,能否有 99%的把握认为两种消费方式的效率有差异?

如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧 CD 所在平面垂直, M 是 CD 上异 于 C , D 的点.

〔1〕证明:平面 AMD⊥平面 BMC ; 〔2〕当三棱锥 M ABC 体积最大时,求面 MAB 与面 MCD 所成二面角的正弦值.

〔2〕设 F 为 C 的右焦点,P 为 C 上一点,且 FP FA FB 0 .证明: FA ,FP , FB 成等差数列,并求该数列的公差.

〔二〕选考题:共 10 分。请考生在第 22、23 题中任选一题作答。假如多做,那么按所做的 第一题计分。

Leave a Comment

您的电子邮箱地址不会被公开。 必填项已用*标注